POPCORN Scalable Population Mapping with Sentinel-1 & Sentinel-2¶
Popcorn (POPulation from COaRrse census Numbers) is a population mapping method designed to address the challenges of generating accurate population maps, especially in data-scarce regions. By using only free, globally available satellite imagery from Sentinel-1 and Sentinel-2, along with a small number of aggregate census counts, Popcorn surpasses the accuracy of many traditional population mapping approaches that rely on high-resolution building footprints. For example, Popcorn produced 100m resolution population maps for Rwanda with fewer than 400 regional census counts, achieving an accuracy score of 66% in Kigali with an average error of just 10 inhabitants per hectare.
Popcorn's method retrieves explicit maps of built-up areas and local building occupancy rates, providing additional insights into the distribution of unpopulated built-up areas, such as industrial warehouses. This makes the method interpretable and practical for urban planning and humanitarian efforts. Popcorn aims to democratize access to high-resolution population maps, making them available to regions without the resources for extensive census campaigns. You can find the full paper here and find a lot more information about the model and files here on Popcorn Population Mapping Project page
Data Characteristics¶
Category | Details |
---|---|
Data Inputs | - Satellite imagery from Sentinel-1 and Sentinel-2 |
- Coarse regional population counts | |
Key Features | - 100m ground sampling distance (GSD) |
- Built-up area and building occupancy rate maps | |
- Scalable and timely mapping for urban planning and humanitarian use | |
Example Use Case | - Rwanda population mapping: 66% accuracy in Kigali with minimal census data |
Citation¶
Metzger, Nando, Rodrigo Caye Daudt, Devis Tuia, and Konrad Schindler. "High-resolution population maps derived from Sentinel-1 and Sentinel-2."
Remote Sensing of Environment 314 (2024): 114383.
Earth Engine Snippet¶
var snazzy = require("users/aazuspan/snazzy:styles");
snazzy.addStyle("https://snazzymaps.com/style/15/subtle-grayscale", "Greyscale");
// load the population density
var popDensity = ee.Image("projects/sat-io/open-datasets/POPCORN/POPCORNv1");
// Define the inferno color palette
var infernoPalette = [
'#000004', '#1b0c41', '#4a0c6b', '#781c81', '#a52c7a', '#cf4446',
'#ed721c', '#fb9b06', '#f7d03c', '#fcffa4'
];
// Define visualization parameters.
var visParams = {
min: 0,
max: 4,
palette: infernoPalette,
opacity: 0.8 // 70% transparent
};
// Mask out the lowest values (e.g., less than a certain threshold)
var threshold = 0.08;
var maskedPopDensity = popDensity.updateMask(popDensity.gt(threshold));
// Add the masked population density layer to the map.
Map.addLayer(maskedPopDensity, visParams, 'Population Density');
// Create a legend
var legend = ui.Panel({
style: {
position: 'bottom-right',
padding: '8px 15px',
}
});
// Create legend title
var legendTitle1 = ui.Label({
value: 'POPCORN',
style: {
fontWeight: 'bold',
fontSize: '32px',
margin: '0 0 4px 0',
padding: '0'
}
});
legend.add(legendTitle1);
// Create another legend title
var legendTitle2 = ui.Label({
value: 'Population Density [People/ha]',
style: {
fontWeight: 'bold',
fontSize: '18px',
margin: '0 0 4px 0',
padding: '0'
}
});
legend.add(legendTitle2);
// Create a continuous color legend
var legendImage = ui.Thumbnail({
image: ee.Image.pixelLonLat().select(0),
params: {
bbox: [0, 0, 1, 0.1],
dimensions: '300x15',
format: 'png',
min: 0,
max: 1,
palette: infernoPalette,
},
style: { margin: '0 0 4px 0' },
});
legend.add(legendImage);
// Create labels for min and max values
var minLabel = ui.Label(visParams.min.toString(), { margin: '0 269px 4px 0' });
var maxLabel = ui.Label(visParams.max.toString(), { margin: '0 0 4px 0' });
// Add labels to the legend
var labelsPanel = ui.Panel([minLabel, maxLabel], ui.Panel.Layout.flow('horizontal'));
legend.add(labelsPanel);
Map.setControlVisibility({all: false});
// Add the legend to the map
Map.add(legend);
// Center map for the rwanda/DRC boarder scene
Map.setCenter(29.244453536522037, -1.6857641047022471, 13); // The third parameter is the zoom level.
Earth Engine App: https://ee-nandometzger.projects.earthengine.app/view/popcornv1-rwa
License¶
Creative Commons Attribution 4.0 International (CC-BY-4.0)
Keywords: population mapping, developing countries, population density, humanitarian actions, machine learning models
Provided by: Metzger et al 2024
Curated in GEE by: Metzger et al 2024 and Samapriya Roy
Last updated: 2024-09-08
Ask AI